
Practice Final Exam, Physics 115A

Fall 2018

This exam is closed book, closed notes, closed calculators/phones. Please show your work
for full credit. You may make free use of anything on the “Useful Formulae” page. There
are eight problems, with point values indicated below out of a total of 80 points.

You have 180 minutes.

Problem Points

1 9

2 10

3 6

4 5

5 10

6 10

7 14

8 16

Total 80
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Useful formulae

Integration by parts:
∫ b
a f(x)∂g(x)

∂x = −
∫ b
a
∂f(x)
∂x g(x) + f(x)g(x)|ba

Commutators: [A,B] ≡ AB −BA.
Gaussian Integrals:

∫∞
−∞ e

−λx2dx =
√
π/λ. Note also

∫∞
−∞ x

2e−λx
2
dx = − d

dλ

∫∞
−∞ e

−λx2dx.

Super helpful completing the square:
∫∞
−∞ e

−(Ax2+Bx)dx =
√

π
Ae

B2/4A

Fourier transform conventions: f̃(k) = 1√
2π

∫∞
−∞ e

−ikxf(x) dx, f(x) = 1√
2π

∫∞
−∞ e

ikxf̃(k) dk

Probability: Prob(a ≤ x ≤ b at time t) =
∫ b
a Ψ∗(x, t)Ψ(x, t)dx

Probability Current: ∂
∂t |Ψ|

2 = − ∂
∂xJ(x, t) for J(x, t) = − i~

2m

(
Ψ∗ ∂Ψ

∂x −
∂Ψ∗

∂x Ψ
)

Position and Momentum Operators: x̂ = x and p̂ = −i~ ∂
∂x (position space); x̂ = i~ ∂

∂p
and p̂ = p (momentum space); canonical commutation relation [x̂, p̂] = i~ (any space)
Expectation Values: 〈Q̂(x, p)〉 =

∫∞
−∞Ψ∗(x, t)Q̂(x,−i~ ∂

∂x)Ψ(x, t)dx (position space);

〈Q̂〉 = 〈Ψ|Q|Ψ〉 (any space)
Uncertainties: σQ ≡

√
〈Q2〉 − 〈Q〉2 for any operator Q

Schrödinger Equation: i~ ∂
∂tΨ(x, t) = − ~2

2m
∂2

∂x2
Ψ(x, t) + V (x, t)Ψ(x, t) (position space);

i~ ∂
∂t |Ψ〉 = Ĥ|Ψ〉 (any space)

Hamiltonian: Ĥ = p̂2

2m + V (x̂) (any space)

Time-independent Schrödinger Equation: Ĥψ(x) = Eψ(x) for separable solutions
ψ(x, t) = e−iEt/~ψ(x).
Orthonormality and completeness:

∫
ψ∗mψndx = δmn and Ψ(x, 0) =

∑
n cnψn(x) with

cn =
∫
ψ∗nΨ(x, 0)dx.

Infinite square well: For Ĥ = p̂2

2m + V with V = 0 for 0 ≤ x ≤ a, ∞ otherwise. Station-

ary solutions ψn(x) =
√

2
a sin(nπx/a), En = n2π2~2

2ma2

Harmonic oscillator: For Ĥ = p̂2

2m+1
2mω

2x̂2, raising/lowering operators a± = 1√
2m~ω

(mωx̂∓

ip̂), x̂ =
√

~
2mω (a+ + a−), p̂ = i

√
~mω

2 (a+ − a−), [a−, a+] = 1, Ĥ = ~ω(a+a− + 1/2),

En = ~ω(n+ 1/2), a+ψn =
√
n+ 1ψn+1, a−ψn =

√
nψn−1, ψ0(x) =

(
mω
π~
)1/4

e−
mω
2~ x

2
.

Free particle: For Ĥ = p̂2

2m . Plane waves ψ(x, t) = Aei(kx−ωt), k = p/~ =
√

2mE/~,

E = ~ω = ~2k2
2m , Wave packets Ψ(x, 0) = 1√

2π

∫
φ(k)eikxdk and φ(k) = 1√

2π

∫
Ψ(x, 0)e−ikxdx

Scattering problems: For E > 0, incoming plane waves from x = −∞, Aeikx (k > 0),
reflected waves returning to x = −∞, Be−ikx, and transmitted waves going to x = +∞,
Feikx. Match in regions with nonzero potential.

Dirac well: For V (x) = −αδ(x) (α > 0), one bound state ψ(x) =
√
mα
~ e−mα|x|/~

2
with

energy E = −mα2

2~2 , plus scattering states with E > 0.

Generalized Uncertainty Principle: σAσB ≥
∣∣∣ 1

2i〈[Â, B̂]〉
∣∣∣

Time Evolution of Expectation Values: d
dt〈Q〉 = i

~〈[Ĥ, Q̂]〉+
〈
∂Q̂
∂t

〉
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1. [9 points total] At t = 0, a particle of mass m in an infinite square well with walls at
x = 0, a is in a superposition of the (normalized) first and third stationary states

Ψ(x, 0) = A(2ψ1(x)− iψ3(x))

(a) [2 points] What must A be in order for Ψ to be a normalized wavefunction?

(b) [3 points] What is the probability that the particle is in the left half of the box
(i.e., between x = 0 and x = a/2) at t = 0? Hint: Instead of trying to do
a complicated integral directly, notice that for odd n, ψn(x) = ψn(a − x) for

0 ≤ x ≤ a. You can use this to relate
∫ a/2

0 ψ∗mψndx to
∫ a

0 ψ
∗
mψndx when m,n

are both odd.

(c) [1 point] Given the initial wavefunction Ψ(x, 0), what is the probability of mea-

suring the energy to be E = 2π2~2
ma2

at t = 0?

(d) [3 points] What is the probability that the particle in the above state Ψ(x, 0) at
t = 0 is in the left half of the box at some later time t?

2. [10 points total] Consider an observable A with corresponding operator Â, with three
normalized eigenstates |ψ1〉, |ψ2〉, |ψ3〉 whose eigenvalues are a1, a2, a3.

(a) [2 points] You prepare a particle in a state |Ψ〉 = 2
3 |ψ1〉+ 1

3 |ψ2〉 − 2
3 |ψ3〉. If you

were to measure A for this particle, what are the possible outcomes, and what
are their probabilities?

(b) [2 points] Suppose you know that [Â, Ĥ] = i~. What is d
dt〈A〉 for a particle in

the state |Ψ〉? You may assume the operator Â is itself independent of time.

(c) [1 point] Suppose you go ahead and measure A and find the value a3. What is
the state of the particle immediately after this measurement?

(d) [2 points] If you measure A again immediately after your first measurement
(the one that yielded a3), what are the possible outcomes, and what are their
probabilities?

(e) [3 points] You prepare a particle in the same initial state as before, |Ψ〉 =
2
3 |ψ1〉 + 1

3 |ψ2〉 − 2
3 |ψ3〉. If you were to make a measurement of the observable

corresponding to the operator Â−1 on this state (i.e., the inverse of Â), what
are the possible outcomes, and what are their probabilities?
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3. [6 points total] Let’s derive some results for the quantum version of the virial theorem.

(a) [4 points] Use your knowledge of the time evolution of expectation values to
show that

d

dt
〈x̂p̂〉 = 2

〈
p̂2

2m

〉
−
〈
x̂
∂V

∂x̂

〉
(The operators x̂ and p̂ are themselves independent of time.)

(b) [1 point] Show that for stationary states this reduces to the quantum version of
the virial theorem,

2

〈
p̂2

2m

〉
=

〈
x̂
dV

dx̂

〉
(c) [1 point] Prove that this implies

〈
p̂2

2m

〉
= 〈V 〉 for stationary states of the har-

monic oscillator.

4. [5 points total] Consider a particle of mass m subject to an attractive delta function
potential well V (x) = −αδ(x), where α > 0. You’ve carefully prepared it in the
bound state of this potential. At the time t = 0 your friend bumps your lab bench,
which causes the strength of your delta function potential to instantaneously change
to V (x) = −γδ(x) for some other constant γ > 0. This happens so fast that the
wavefunction of the particle is unchanged at the moment of the change. What is the
probability that the particle remains in a bound state of the Hamiltonian?

5. [10 points total] Short answers (at most a few sentences each + math where needed)

(a) [2 points] Show that the expectation value of an anti-hermitian operator (i.e.
an operator Q̂ for which Q̂† = −Q̂) is imaginary.

(b) [2 points] You have a particle in the state |Ψ〉 and measure an observable Q
corresponding to a hermitian operator Q̂. If Q̂ has a discrete spectrum of eigen-
vectors |ψn〉, describe what “collapse of the wavefunction” means in terms of |Ψ〉
and |ψn〉. What does “collapse of the wavefunction” mean if Q̂ has a continuous
spectrum of eigenvectors?

(c) [2 points] Why do we require that physical states live in Hilbert space?

(d) [2 points] How are states |Ψ〉, position-space wavefunctions Ψ(x), and momentum-
space wavefunctions Ψ(k) related? Use Dirac notation.

(e) [2 points] If the Hamiltonian for a two-level system is written with respect to
some basis as a matrix

H =

(
a 0
0 b

)
for real constants a, b, what do you know about the basis vectors?
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6. [10 points total] Consider a particle of mass m in a harmonic oscillator potential with
frequency ω.

(a) [2 points] The ground state is defined by a−|ψ0〉 = 0. Using Dirac notation, show
that this leads to a differential equation satisfied by the position-space ground
state wavefunction ψ0(x). You will want to use the matrix elements of x̂ and p̂
in position space, namely 〈x|x̂|x′〉 = x′δ(x− x′) and 〈x|p̂|x′〉 = −i~ ∂

∂xδ(x− x
′).

(b) [2 points] Solve this differential equation to find the explicit form of the (properly-
normalized) position-space ground state wavefunction ψ0(x).

(c) [2 points] Using Dirac notation, show that a−|ψ0〉 = 0 leads to a differential
equation satisfied by the momentum-space ground state wavefunction ψ0(k). In
analogy with part (a), you will want to use the matrix elements of x̂ and p̂ in
momentum space, namely 〈p|p̂|p′〉 = p′δ(p− p′) and 〈p|x̂|p′〉 = i~ ∂

∂pδ(p
′ − p).

(d) [2 points] Solve this differential equation to find the explicit form of the (properly-
normalized) momentum-space ground state wavefunction ψ0(k).

(e) [2 points] Compute the Fourier transform of ψ0(x) and show that it agrees with
your answer from part (d).

7. [14 points total] Consider the finite square well with V = −V0 for −a ≤ x ≤ a and
V = 0 for |x| > a.

(a) [1 point] Why can the separable solutions to the time-independent Schrödinger
equation be expressed in terms of even and odd functions of x?

(b) [3 points] Write down the general form of the even bound-state wavefunctions
in the three regions x < −a, −a ≤ x ≤ a, and x > a.

(c) [3 points] Find the transcendental equation for the allowed energies. You do not
need to solve it.

(d) [3 points] Now consider the scattering states with energies E > 0. Write down
the general form of the scattering solutions in the three regions x < −a, −a ≤
x ≤ a, and x > a.

(e) [4 points] Write down the matching conditions at each of the boundaries between
these regions. You do not need to solve them.
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8. [16 points total] Let’s end with four short problems involving the most important
potential in the universe, the quantum harmonic oscillator.

(a) [4 points] A particle is in the ground state of the harmonic oscillator with frequency
ω, when suddenly the spring constant doubles so that ωnew = 2ω, without initially
changing the wave function. What is the probability that a measurement of the
energy would still return the value of ~ω/2? What is the probability of getting ~ω?

(b) [5 points] Consider a particle in the ground state of a harmonic oscillator of frequency
ω. Compute 〈x〉, 〈x2〉, 〈p〉, 〈p2〉, and use these to verify that the ground state saturates
the Heisenberg uncertainty principle. Hint: you can find 〈x〉 and 〈p〉 quickly by
thinking about symmetries.

(c) [4 points] Recall the coherent states of the harmonic oscillator, which are eigenfunc-
tions of the lowering operator a−. These states |α〉 satisfy a−|α〉 = α|α〉 with a
complex eigenvalue α. In position space, this implies a differential equation satisfied
by the position-space wavefunction of the coherent state, Sα(x). Write down this
differential equation and show that it is satisfied by travelling gaussian wavepackets,
i.e. wavefunctions of the form Sα(x) = Ae−ax

2−bx. Determine the constants A, a,
and b for a properly-normalized coherent state of eigenvalue α in terms of m,ω, ~,
and α.

(d) [3 points] Find the allowed energies of the half harmonic oscillator,

V (x) =

{
1
2mω

2x2 forx > 0
∞ forx < 0

This represents, for example, a spring that can be stretched from its equilibrium
position but not compressed. This problem can be solved with some careful thought
but very little calculation – just be sure to justify your answer.

Congratulations, you’ve reached the end of the exam.
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