Practice Final Exam, Physics 115A
Fall 2018

This exam is closed book, closed notes, closed calculators/phones. Please show your work
for full credit. You may make free use of anything on the “Useful Formulae” page. There
are eight problems, with point values indicated below out of a total of 80 points.

You have 180 minutes.

Problem ‘ Points ‘
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Useful formulae

Integration by parts: f f(z ag(‘r) = f; U@ g (2) + f(x)g(w )

Commutators: [A, B] = AB — BA

Gaussian Integrals: ffooo e~ g = \/m Note also ffooo z2e N g = —% ffooo e .
Super helpful completing the square: [ e~ (A*+B2) g7 — \/§6B2/4A

Fourier transform conventions: f(k) = \/% [ em M f(x) da, f(z) = \/% [22 ek f(k) dk

Probability: Prob(a < x < b at time t) = f; U*(z, t)U(z, t)d:n

Probability Current: Q|‘1J|2 = —@J(x t) for J(x,t) = (‘IJ* i 651;* 0)
Position and Momentum Operators: & = z and p = —zh— (position space); & = iha%
and p = p (momentum space); canonical commutation relatlon [z, p] = ih (any space)
Expectation Values: (Q(z,p)) = = [ 0¥ (z,1)Q(x, zhax) (z,t)dx (position space);

(Q) = (¥|Q|¥) (any space)

Uncertainties: og = /(Q?) — (Q)? for any operator Q

Schrédinger Equation: ih%\ﬂ(x,t) —%W\P(:{} t) + V(xz,t)¥(x,t) (position space);
ih%\@) = H|¥) (any space)

Hamiltonian: H = % + V() (any space)

Time-independent Schrédinger Equation: H Y(x) = Ev(z) for separable solutions
Y(z,t) = e F ().

Orthonormality and completeness: [ ¢ ndx = §pp and ¥(z,0) = > cpthy(z) with
en = [VE¥(x,0)dz.

Infinite square well: For H = % 4+ V with V =0 for 0 < x < a, co otherwise. Station-
2h2

ary solutions 9, (z) = \/% sin(nrz/a), E, = n277:102

A~ ~2
Harmonic oscillator: For H = p——l—fmwQa:Q

. 1 o
raising /lowerin rator = ——
, raising /lowering operators a4 M(mwmi

Zﬁ)v T = 27Zw(a+ +ta- ) p - 7’\/ hmw(a+ - a- )7 [CL_,CL+] = 1> -H = hw(a"ra + 1/2)7
1/4 _mw .2

E, =hw(n+1/2), ayin = vn+ 1pi1, a—tp = /mhp_1, Yo(z) = ()" e 2
Free partlcle For H = p—m. Plane waves ¢ (z,t) = Ae!*=Y k = p/h = /2mE/h,

E = hw = 2" Wave packets ¥(z,0) f [ ¢(k)e**dk and ¢(k) = \/%—F f\Il(a'U,O)e*ikxdx
Scatterlng problems. For E > 0, incoming plane waves from z = —oo, Ae** (k > 0),
reflected waves returning to z = —oo, Be *** and transmitted waves going to x = +o0,

Fe'** Match in regions with nonzero potential.
Dirac well: For V(z) = —ad(z) (a > 0), one bound state ¢(z) = —V%’“}‘e—mo‘m/ﬁ with
energy F =

plus scattering states with £ > 0.

2r2 ’
Generalized Uncertainty Principle: 040 5 LA, B])‘
Time Evolution of Expectation Values: %( ) = 4([H, Q)) + <%>



1. [9 points total] At t = 0, a particle of mass m in an infinite square well with walls at
x = 0,a is in a superposition of the (normalized) first and third stationary states

U(z,0) = A(2¢1(x) —ivps(x))

(a) [2 points] What must A be in order for ¥ to be a normalized wavefunction?

(b) [3 points] What is the probability that the particle is in the left half of the box
(i.e., between z = 0 and = = a/2) at t = 07 Hint: Instead of trying to do
a complicated integral directly, notice that for odd n, ¥y (x) = Yp(a — x) for
0 <z < a. You can use this to relate foa/2 Vi ndx to [ Uk Unde when m,n
are both odd.

(c) [1 point] Given the initial wavefunction ¥(z,0), what is the probability of mea-

suring the energy to be E = 2;:;@2 at t =07

(d) [3 points] What is the probability that the particle in the above state ¥(x,0) at
t = 0 is in the left half of the box at some later time ¢?

2. [10 points total] Consider an observable A with corresponding operator A, with three
normalized eigenstates [11), [1)2), |¢)3) whose eigenvalues are aq, az, as.

(a) [2 points] You prepare a particle in a state |¥) = Z|th1) + £[1)2) — Z[tp3). If you
were to measure A for this particle, what are the possible outcomes, and what
are their probabilities?

(b) [2 points] Suppose you know that [A, H] = ih. What is %<A> for a particle in
the state |¥)? You may assume the operator A is itself independent of time.

(¢) [1 point] Suppose you go ahead and measure A and find the value az. What is
the state of the particle immediately after this measurement?

(d) [2 points] If you measure A again immediately after your first measurement
(the one that yielded as), what are the possible outcomes, and what are their
probabilities?

(e) [3 points] You prepare a particle in the same initial state as before, |¥) =
2|u1) + £[1b2) — 2[4b3). If you were to make a measurement of the observable
corresponding to the operator A1 on this state (i.e., the inverse of /1), what
are the possible outcomes, and what are their probabilities?



3. [6 points total] Let’s derive some results for the quantum version of the virial theorem.

(a) [4 points] Use your knowledge of the time evolution of expectation values to

show that p ) 5
" p OV
il —9( £\ _
4\ <2m> <x8§c>

(The operators & and p are themselves independent of time.)

(b) [1 point] Show that for stationary states this reduces to the quantum version of

the virial theorem,
P> R%
2( — )Y=(2Z—
2m dz

(c) [1 point] Prove that this implies <%> = (V) for stationary states of the har-

monic oscillator.

4. [5 points total] Consider a particle of mass m subject to an attractive delta function
potential well V(z) = —ad(x), where a > 0. You've carefully prepared it in the
bound state of this potential. At the time ¢t = 0 your friend bumps your lab bench,
which causes the strength of your delta function potential to instantaneously change
to V(z) = —vd(x) for some other constant v > 0. This happens so fast that the
wavefunction of the particle is unchanged at the moment of the change. What is the
probability that the particle remains in a bound state of the Hamiltonian?

5. [10 points total] Short answers (at most a few sentences each + math where needed)

(a) [2 points] Show that the expectation value of an anti-hermitian operator (i.e.
an operator Q for which QT = —Q) is imaginary.

(b) [2 points] You have a particle in the state |¥) and measure an observable @
corresponding to a hermitian operator Q If Q has a discrete spectrum of eigen-
vectors |¢y,), describe what “collapse of the wavefunction” means in terms of |¥)
and |1, ). What does “collapse of the wavefunction” mean if @ has a continuous
spectrum of eigenvectors?

(¢) [2 points] Why do we require that physical states live in Hilbert space?

(d) [2 points] How are states | V), position-space wavefunctions ¥(z), and momentum-
space wavefunctions W(k) related? Use Dirac notation.

(e) [2 points] If the Hamiltonian for a two-level system is written with respect to

some basis as a matrix
a 0
a=(5 )

for real constants a, b, what do you know about the basis vectors?



6. [10 points total] Consider a particle of mass m in a harmonic oscillator potential with
frequency w.

(a)

()

[2 points] The ground state is defined by a_|19) = 0. Using Dirac notation, show
that this leads to a differential equation satisfied by the position-space ground
state wavefunction 1y(z). You will want to use the matrix elements of & and p
in position space, namely (z|#[z’) = 2'5(z — 2’) and (z|p|2’) = —ihL5(x — ).
[2 points| Solve this differential equation to find the explicit form of the (properly-
normalized) position-space ground state wavefunction g (z).

[2 points] Using Dirac notation, show that a_|i) = 0 leads to a differential
equation satisfied by the momentum-space ground state wavefunction (k). In
analogy with part (a), you will want to use the matrix elements of & and p in
momentum space, namely (p|p|p’) = p'd(p — p’) and (p|Z|p/) = iha%é(p’ —p).

[2 points| Solve this differential equation to find the explicit form of the (properly-
normalized) momentum-space ground state wavefunction (k).

[2 points] Compute the Fourier transform of 1y(z) and show that it agrees with
your answer from part (d).

7. [14 points total] Consider the finite square well with V' = —Vj for —a < z < a and
V =0 for |z| > a.

(a)

[1 point] Why can the separable solutions to the time-independent Schrédinger
equation be expressed in terms of even and odd functions of x?

[3 points] Write down the general form of the even bound-state wavefunctions
in the three regions z < —a, —a < z < a, and = > a.

[3 points] Find the transcendental equation for the allowed energies. You do not
need to solve it.

[3 points] Now consider the scattering states with energies E > 0. Write down
the general form of the scattering solutions in the three regions x < —a, —a <
r < a,and x > a.

[4 points] Write down the matching conditions at each of the boundaries between
these regions. You do not need to solve them.



8.

(a)

[16 points total] Let’s end with four short problems involving the most important
potential in the universe, the quantum harmonic oscillator.

[4 points| A particle is in the ground state of the harmonic oscillator with frequency
w, when suddenly the spring constant doubles so that wpe,, = 2w, without initially
changing the wave function. What is the probability that a measurement of the
energy would still return the value of fiw/27 What is the probability of getting fiw?

[5 points] Consider a particle in the ground state of a harmonic oscillator of frequency
w. Compute (z), (x2), (p), (p?), and use these to verify that the ground state saturates
the Heisenberg uncertainty principle. Hint: you can find (z) and (p) quickly by
thinking about symmetries.

[4 points] Recall the coherent states of the harmonic oscillator, which are eigenfunc-
tions of the lowering operator a_. These states |a) satisfy a_|a) = ala) with a
complex eigenvalue a.. In position space, this implies a differential equation satisfied
by the position-space wavefunction of the coherent state, So(x). Write down this
differential equation and show that it is satisfied by travelling gaussian wavepackets,
i.e. wavefunctions of the form S,(z) = Ae~%”=b  Determine the constants A, a,
and b for a properly-normalized coherent state of eigenvalue « in terms of m,w, A,
and a.

[3 points] Find the allowed energies of the half harmonic oscillator,

1 2,2
_J gmwiz forx >0
V(@) { 00 forx <0

This represents, for example, a spring that can be stretched from its equilibrium
position but not compressed. This problem can be solved with some careful thought
but very little calculation — just be sure to justify your answer.

Congratulations, you’ve reached the end of the exam.



