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Although origami began as a ceremonial Japanese art form, this ancient art of folding has
widespread modern applications in fields ranging from biomedical engineering to the space industry.
These powerful uses drive research in mathematical methods, such as conformal mapping, to de-
sign origami structures. Conformal mapping transforms the complex plane, simplifying complicated
shapes while preserving the angles between any two curves. In the context of origami, the con-
formal mapping method inverts the output of a conformal map to design origami crease patterns.
The conformal mapping technique can efficiently design foldable conical structures by inverting the
complex logarithm.

I. INTRODUCTION

Origami is the art of folding paper into three-
dimensional figures. Origami is a Japanese term,
originating from the Japanese words ori (fold) and
kami (paper) [1]. However, the geographical origin
of origami is often debated because paper does not
preserve well over long periods of time, leaving less
material evidence for archaeologists. Some suggest
that Buddhist monks brought Zhezhi, the Chinese
art of paper folding, to Japan for ceremonial pur-
poses [2]. Others assert that the Japanese invented
origami about a thousand years ago. Long after the
proposed origin of origami, Ihara Saikaku wrote the
first recorded reference to origami in a poem that
described folded butterflies, similar to Fig. 1, in a
Shinto wedding [3]. This poem reveals that origami
was a common cultural phenomenon in Japan by
the late 17th century. Historically, origami has been
used for ceremonial and recreational purposes. How-
ever, origami also has modern applications in sci-
ence, mathematics, engineering, and technology.

Although origami initially developed as a
Japanese art form, scientists worldwide apply the
principles of origami to allow structures to com-
pactly traverse long distances and reassemble with
little effort. Origami becomes essential when struc-
tures are inaccessible at their destination, such
as the equipment involved in the space industry.
Aerospace engineers must compactly deploy and re-
assemble massive structures such as solar sails and
parabolic antennas using principles of origami at the
target location [4] [5]. Additionally, architects and
civil engineers use origami principles to determine
structural efficiency of foldable surfaces such as tem-
porary structures or convertible roofs [6]. Engineers
and mechanics also apply origami in vehicle design
to protect passengers from injury from a crash by
optimizing the folding of the car [7]. Bioengineers
turn to DNA origami to assemble biomolecules at

FIG. 1. The above depicts a modern origami butterfly
[10]. Saikaku’s poem describes paper butterflies at a
Shinto wedding–the first written description of origami.

the nanoscale, and medical engineers use origami
to compact and deploy stent grafts to assist mini-
mally invasive surgery [8] [9]. Origami’s multifaceted
potential drives the need to standardize and sim-
plify the origami design process using mathematical
methods.

Engineers and scientists can use conformal map-
ping to design origami-based structures. Conformal
mapping transforms a complex plane while preserv-
ing angles between any two curves in the plane. This
mapping technique preserves solutions to Laplace’s
equation, allowing representation of fluid flow, heat
flow, and electric fields; it also preserves Dirichlet
and Neumann boundary conditions [11]. By apply-
ing principles of transformation, conformal mapping
can simplify and unify origami design techniques.

II. METHODS

A. Conformal Mapping

Conformal mapping preserves angles between
curves in a plane transformation that allows scien-
tists to simplify the behavior of complicated fields to
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solve physical problems. For example, Fig. 2 trans-
forms circular curves to flat lines using the complex
logarithm. Analysis of the polar form in Eq. 1 re-
veals that in this conformal mapping example, the
circular complex exponential transforms to a sum of
scalar components, creating a flat output plane.

ln(z) = ln(reiθ) = ln(r) + ln(eiθ) = ln(r) + iθ (1)

FIG. 2. This conformal map transforms circular curves
to linear curves using the complex logarithm, which is
the inverse of the complex exponential. This illustrates
how conformal mapping can transform the plane and
simplify the behavior of complicated curves. The figure
was generated in python using open source conformal
mapping documentation [12].

As illustrated in Eq. 1, complex functions have
complex input z and complex output f(z). The com-
plex output can be expressed as a real component,
ϕ(x,y), and an imaginary component, ψ(x,y), where
x is the real component and y is the imaginary com-
ponent of the complex input. Eq. 2 demonstrates
this relationship between f(z) and ϕ and ψ, as well
as the relationship between z and x and y.

f(z) = ϕ+ iψ, where z = x+ iy (2)

A map from the x-y plane to the ϕ-ψ plane will be
conformal at a point if it preserves angles between
any 2 curves passing through that point. The com-
plex output map is conformal at a point if it is ana-
lytic and if its derivative is not equal to zero at that
point. An analytic function observes the Cauchy-
Riemann conditions shown in Eq. 3.

∂ϕ

∂x
=
∂ψ

∂y
and

∂ϕ

∂y
= −∂ψ

∂x
(3)

Equipotential lines occur when ϕ is constant and
streamlines occur when ψ is constant. Equipotential
and streamlines are orthogonal, and can represent

physical phenomena; for example, streamlines can
represent the direction of fluid flow. Conformal map-
ping simplifies the movement of the streamlines by
transforming them to an appropriate plane, allow-
ing scientists to work with complicated fields with
ease. Fig. 3 shows an illustration of the fluid flow
example, comparing the analytic flow in Fig. 3a to
the flow with circulation and with a source in 3b
and 3c, dipole flow in 3d, and flow in a wedge in
3e. Conformal mapping can transform each of these
complicated flow phenomena into the simpler flow in
Fig. 3a.

FIG. 3. The simple flow in (a) is the conformal repre-
sentation of (b), (c), (d), and (e) using different trans-
formation functions (f(z)). This figure can be found in
Ishida et al. 2014 [13].

We can use the principles of conformal mapping to
transform initial crease lines to fold lines in origami
structures. This simplifies the complicated process
of creating crease lines from the beginning.

III. RESULTS

A. Modeling Origami Using Conformal
Mapping

To model origami structures, we can visualize
fold lines as equipotential lines and streamlines and
transform the fold lines to crease patterns, using
the inverse analytic function to return from the ϕ-
ψ plane to the x-y plane. This reverse-engineering
technique simplifies the process of creating crease
lines, which is difficult to do from scratch.

To create a physical origami structure that exists
on a plane, the structure must be flat-foldable. In
other words, the fold lines of the structure cannot
be curved. Since transforming the lines would cre-
ate a curved fold, the coordinates of the nodes are
transformed as shown in Fig. 4, and a straight line
connects the nodes to create a new fold line. There-
fore, the angles between the new fold lines are not
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exactly preserved, thus the new fold plane is not ex-
actly conformal [13].

FIG. 4. The figure shows (a) the original fold lines and
(b) the transformed fold lines. Notice that the origi-
nal conformal transformation produces curved lines, and
straight lines are retrieved by connecting the nodes. This
figure originally appeared in Ishida et al. 2014 [13].

B. Flat-Foldability

An origami structure’s crease pattern illustrates
where a fold occurs. The crease pattern can de-
scribe concave valley folds and convex mountain
folds. Flat-foldable angles are bounded with a max-
imum angle limit of π to −π, as demonstrated in
Fig. 5. The structure is considered flat-foldable at a
vertex when alternating angles at the vertex sum to
180 degrees and the number of mountain and valley
folds differ by two [14]. Flat-foldability is particu-
larly interesting to scientists and engineers because
a flat-foldable structure becomes compact, allowing
more robust applications. A flat-foldable structure
must be flat-foldable at both its final folded config-
uration in the ϕ-ψ plane and its initial crease lines
in the x-y plane [13].

FIG. 5. This figure demonstrates flat-foldability in
Miura-ori origami. (1) Shows the crease lines of the fully
expanded structure. (2) Shows partially folded struc-
ture. (3) Shows the fully compacted flat-foldable struc-
ture. This figure originally appeared in Meloni et al.
2021 [14].

C. Foldable Conical Structures

The conformal mapping technique is much more
efficient at creating conical structures than previ-
ous techniques, which involved designing new crease
patterns from scratch.

When we bend the crease lines of a circular flat-
foldable structure in the same direction, we can fold
a circular membrane such as in Fig. 6. This crease
pattern is called a twist bucking pattern. The pat-
tern involves 6 elements across the lateral direction
[15]. We can represent this crease pattern as a com-
plex map using Eq. 4, where k is a constant. Eq.
4 uses z to express the new folded plane and f(z) to
express the original plane.

f(z) = i · k log(z) (4)

Fig 6 contains visualizations of conical origami
structures. The left section depicts the crease pat-
terns, the middle section shows the crease patterns
after angle correction, and the right section depicts
the physical models of each conical design. The
fsolve function in MatLab is used to tune the β
variable in Eq. 6 by minimizing the difference of
the nonlinear equation – this corrects the angle and
allows the cone to close [13].

2Nβ′ +Φ− 2Dα′′ = 2π (5)

FIG. 6. The left subfigures (a), (d), (g) show crease
patterns. The middle subfigures (b), (e), (h) show angle-
corrected crease patterns. The right subfigures (c), (f),
(i) show physical models. The figure is from Ishida et al.
2014 [13].

The example of foldable conical structures demon-
strates the potential of the conformal mapping
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method of origami.

IV. DISCUSSION

The conformal mapping technique provides a
more efficient method of designing origami crease
patterns. Although this paper explores foldable con-
ical structures with six fold lines, it could have eas-
ily expanded to flat-foldable structures with four fold
lines, such as the Miura-ori origami pattern depicted
in Fig. 5. The engineering and materials resources
on origami and conformal mapping are fairly robust.
However, far fewer authors explore the artistic pos-
sibilities of the conformal mapping technique. Con-
formal mapping has the potential to provide artists
with a powerful design tool, allowing them to create

more complicated structures.
The conformal mapping technique is limited be-

cause it can produce structures that are unfoldable.
It is also somewhat inconvenient for producing some
flat-foldable structures because angles must be cor-
rected at each node [13]. Other forms of computa-
tional origami, which uses algorithms to design fold-
ing structures, may provide more effective designs
for certain structures to artists and scientists alike.
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